Action Integrals and Infinitesimal Characters

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action Integrals and Infinitesimal Characters

Let G be a reductive Lie group and O the coadjoint orbit of a hyperbolic element of g. By π is denoted the unitary irreducible representation of G associated with O by the orbit method. We give geometric interpretations in terms of concepts related to O of the constant π(g), for g ∈ Z(G). In the spirit of the orbit method we interpret geometrically the infinitesimal character of the differentia...

متن کامل

INFINITESIMAL RIGIDITY FO s R THE ACTION

Let r = SL(n, Il) or any subgroup of finite index. Then the action of r on Tn by automorphisms is infinitesimally rigid for n ;::: 7, i.e., the cohomology H I (r, Vec(Tn)) = 0 , where Vec(Tn) denotes the module of COO vector fields on Tn .

متن کامل

Complex lapse, complex action, and path integrals.

Abstract. Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the “3+1” action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and ...

متن کامل

The characters of supercuspidal representations as weighted orbital integrals

Weighted orbital integrals are the terms which occur on the geometric side of the trace formula. We shall investigate these distributions on a p-adic group. We shall evaluate the weighted orbital integral of a supercuspidal matrix coefficient as a multiple of the corresponding character.

متن کامل

GENERALIZED SPHERICAL FUNCTIONS ON REDUCTIVE p-ADIC GROUPS

Let G be the group of rational points of a connected reductive p-adic group and let K be a maximal compact subgroup satisfying conditions of Theorem 5 from Harish-Chandra (1970). Generalized spherical functions on G are eigenfunctions for the action of the Bernstein center, which satisfy a transformation property for the action of K. In this paper we show that spaces of generalized spherical fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2010

ISSN: 0377-9017,1573-0530

DOI: 10.1007/s11005-010-0372-x